skip to main content


Search for: All records

Creators/Authors contains: "Carrier, David R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Synopsis

    During locomotion, cervical muscles must be active to stabilize the head as the body accelerates and decelerates. We hypothesized that cervical muscles are also part of the linked chain of axial muscles that provide core stabilization against torques applied to the hip joint by the extrinsic muscles of the legs. To test whether specific cervical muscles play a role in postural stabilization of the head and/or core stabilization of the pelvic girdle, we used surface electromyography to measure changes in muscle activity in response to force manipulations during constant speed running and maximum effort counter-movement jumps. We found that doubling the mass of the head during both running and maximum effort jumping had little or no effect on (1) acceleration of the body and (2) cervical muscle activity. Application of horizontal forward and rearward directed forces at the pelvis during running tripled mean fore and aft accelerations, thereby increasing both the pitching moments on the head and flexion and extension torques applied to the hip. These manipulations primarily resulted in increases in cervical muscle activity that is appropriate for core stabilization of the pelvis. Additionally, when subjects jumped maximally with an applied downward directed force that reduced acceleration and therefore need for cervical muscles to stabilize the head, cervical muscle activity did not decrease. These results suggest that during locomotion, rather than acting to stabilize the head against the effects of inertia, the superficial muscles of the neck monitored in this study help to stabilize the pelvis against torques imposed by the extrinsic muscles of the legs at the hip joint. We suggest that a division of labor may exist between deep cervical muscles that presumably provide postural stabilization of the head versus superficial cervical muscles that provide core stabilization against torques applied to the pelvic and pectoral girdles by the extrinsic appendicular muscles.

     
    more » « less
  2. Abstract

    Sexual dimorphism often arises as a response to selection on traits that improve a male's ability to physically compete for access to mates. In primates, sexual dimorphism in body mass and canine size is more common in species with intense male–male competition. However, in addition to these traits, other musculoskeletal adaptations may improve male fighting performance. Postcranial traits that increase strength, agility, and maneuverability may also be under selection. To test the hypothesis that males, as compared to females, are more specialized for physical competition in their postcranial anatomy, we compared sex‐specific skeletal shape using a set of functional indices predicted to improve fighting performance. Across species, we found significant sexual dimorphism in a subset of these indices, indicating the presence of skeletal shape sexual dimorphism in our sample of anthropoid primates. Mean skeletal shape sexual dimorphism was positively correlated with sexual dimorphism in body size, an indicator of the intensity of male–male competition, even when controlling for both body mass and phylogenetic relatedness. These results suggest that selection on male fighting ability has played a role in the evolution of postcranial sexual dimorphism in primates.

     
    more » « less